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Abstract

We show that a cascade of resonance captures constitutes the triggering mechanism of limit cycle oscillations (LCOs)

due to aeroelastic instability of rigid wings in flow. We consider a two-degree-of-freedom (2-dof) wing model in

subsonic flow with cubic nonlinear stiffnesses at the support. Under the assumption of quasi-steady aerodynamics, we

apply a complexification/averaging technique to express the dynamics of fluid–structure interactions in terms of three

fast-frequency components; these are the two linear natural frequencies corresponding to heave and pitch, and a super-

harmonic at three times the pitch frequency. Bifurcation analysis of the resulting set of modulation equations governing

the slow dynamics is carried out via the method of numerical continuation, and reveals the different types of steady

state motions realized as parameters vary. It turns out that the LCO triggering mechanism consists of a combination of

different dynamic phenomena, taking place at three main stages or regimes: attraction to transient resonance captures

(TRCs), escapes from these captures and, finally, entrapments into permanent resonance captures (PRCs). We examine

numerically and analytically the dynamics at each of these stages by means of wavelet transform analysis, study of the

evolution of appropriately defined phase variables in projections of the phase space of the dynamics, and analysis of

instantaneous energy exchanges between the various nonlinear modes involved. The general conclusion is that an initial

excitation of the heave mode by the flow acts as the triggering mechanism for the excitation of the pitch mode through

nonlinear interactions resulting from the resonance captures and escapes. The eventual excitation of the pitch mode

signifies the appearance of an LCO of the in-flow wing.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Limit cycle oscillation (LCO); Aeroelastic instability; Numerical continuation; Triggering mechanism; Resonance capture

1. Introduction

We study triggering mechanisms for limit cycle oscillations (LCOs) due to aeroelastic instability in a two-

dimensional, two-degree-of-freedom (dof) wing model with cubic nonlinear structural stiffnesses in both dof (i.e., heave
e front matter r 2005 Elsevier Ltd. All rights reserved.
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and pitch), under the assumptions of subsonic flight and quasi-steady aerodynamics. Fundamentals of the flutter

analysis for the underlying linear model are well-known [see, for example, Fung (1955) and Dowell et al. (1995)]; i.e.,

instability due to Hopf bifurcation at the flutter speed leading to diverging responses. However, due to structural or

damping nonlinearities, such divergence in the linear model can be limited so that, eventually, the system attains self-

sustaining responses in the form of LCOs (Nayfeh and Mook, 1979).

LCOs are known to be a persistent problem on fighter aircraft such as the F-16 and F/A-18 at high subsonic and

transonic speeds (Bunton and Denegri, 2000). The interaction between wing and store of a parametric F-16 wing was

studied numerically by combining the finite element method and computational fluid mechanics (Cattarius, 1999).

Flight tests were performed to measure actual LCOs of these fighters (Denegri, 2000). Lee and LeBlanc (1986)

numerically examined the effects of cubic nonlinear stiffness on the flutter behavior of a two-dimensional airfoil. They

established that when the system has softening stiffness, it may possess subcritical LCOs which occur below the linear

flutter speed so that they show dependence on initial conditions; for a hardening spring, however, such dependence on

initial conditions disappears, and a single LCO is obtained for a single value of the flow speed. Lee and Desrochers

(1987) considered different kinds of structural nonlinearities, such as free play (i.e., dead-zone nonlinearity), for flutter

analysis. The existence of LCOs of prototypical aeroelastic wing sections with torsional nonlinearity including

asymmetry was studied using the describing function method, and it was shown that the amplitude of a pitching LCO

does not always increase with the flow speed for certain elastic axis positions (Singh and Brenner, 2003). Computational

and experimental studies of LCOs in nonlinear aeroelastic systems were also performed (O’Neil and Strganac, 1998;

Sheta et al., 2002); in particular, Sheta et al. (2002) employed a multidisciplinary analysis to compare numerical with

experimental data, suggesting the importance of modeling both the fluid and structural nonlinearities for accurate

prediction of the onset and the magnitudes of LCOs. Normal form theory was utilized to investigate and unfold the

subcritical/supercritical nature of the flutter Hopf bifurcation (Coller and Chamara, 2004); and a higher-order

harmonic balance method was considered to study the secondary Hopf bifurcation of aeroelastic responses (Liu and

Dowell, 2004). Gilliatt et al. (2003) studied the possibility of internal resonance in an aeroelastic system (a stall model)

under nonlinear aerodynamic loads; and Lind et al. (2001) utilized a wavelet transform to model structural

nonlinearities from flight data, and used its results to predict the onset of LCOs.

Many studies have attempted to analyze flutter behavior and the resulting LCOs; however, no works have focused on

the modeling and physical understanding of the LCO triggering mechanism itself. The classical notion of flutter from

linear analysis is that ‘y lift inputs energy into heave and pitch lags by 901; flutter is a combination of the pitch and heave

modes with phase and amplitude that extracts energy from the flow when either mode acting alone would be stable y’

(Fung, 1955). Thus, the main objective of this study is to understand the LCO triggering mechanism considering the

simplest adequate model; i.e., the study of the dynamics of how the LCOs are triggered, and then developed, in a wing

model containing cubic nonlinear structural stiffness in both dof (heave and pitch).

We start with the system description in Section 2, together with linear flutter analysis results which can be found in

references such as Dowell et al. (1995); in Section 3, we first examine dominant frequency components via fast Fourier

transforms (FFTs), and characterize their instantaneous variation via wavelet transforms (WTs) with respect to a

reduced velocity; then we develop the slow-flow dynamics model based on numerical observations; and finally we

establish a multiphase averaged system (Lochak and Meunier, 1988) with three main frequency components utilizing

the complexification/averaging technique first developed by Manevitch (2001). Then, we present steady-state

bifurcation analysis utilizing MATCONT, which is the numerical continuation code in Matlabs developed by Dhooge

et al. (2003). In Section 4, after reviewing some useful definitions and theories, we numerically study the LCO triggering

mechanisms from the slow-flow dynamics model. It turns out that the mechanism is composed of a series of transient

and permanent resonance captures (Burns and Jones, 1993; Vakakis and Gendelman, 2001), through which energy

transfers between modes occur. Eventually, energy balance is reached, leading to steady-state periodic motions, or

LCOs. Then, the partially averaged systems (Arnold, 1988) derived at each stage constitute reliable analytical models

that are used to study the resonance capture phenomena which accompany frequency shifting (Zniber and Quinn, 2003)

in the response due to fluid–structure interaction with increase of input energy. Finally, concluding remarks are

presented.
2. System description

Consider a two-dimensional rigid wing model with two dof: heave and pitch (Fig. 1). In Fig. 1, we denote by ac the

aerodynamic center (usually assumed to be located at a quarter-chord); by ea, the elastic axis; by cg, the center of

gravity; by h and a, heave (positive downward) and pitch (positive clockwise) dofs, respectively; by c ¼ 2b, the chord
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Fig. 1. Two-dimensional, two-degree-of-freedom wing model.
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length; by e, the location of the ac measured from the ea (positive forward of ea); by xcg, location of the cg measured

from the ea (positive aft of the ea); by Kh and Ka, the linear bending and twist stiffness coefficients, respectively; by c1
and c2, the nonlinear bending and twist stiffness factors, respectively; by U, (constant and uniform) flow speed around

the wing; by L and M, lift and aerodynamic moment respectively acting at the ac so that equivalent aerodynamic forces

acting at the ea can be computed as Lea ¼ L;Mea ¼M þ eL � eL for small angles.

Referring to Dowell et al. (1995), we write the equations of motion

m €hþ Sa €aþ Khðhþ c1h3Þ þ qS
qCL

qa
aþ

_h

U

 !
¼ 0,

Ia €aþ Sa
€hþ Kaðaþ c2a3Þ � qSe

qCL

qa
aþ

_h

U

 !
¼ 0, ð1Þ

where m is the mass of the airfoil; Sa, the mass unbalance; Ia, the mass moment of inertia with respect to ea; q, the

dynamic pressure; and S, the almost invariable planform area of the wing. The differentiation indicated by the over-dot

is with respect to time, t. Quasi-steady aerodynamics is assumed so that we have the lift L ¼ qSðqCL=qaÞðaþ _h=UÞ.

In nondimensional form the equations of motion are

y00 þ xaa00 þ mCL;aYy0 þ O2yþ xyy3 þ mCL;aY2a ¼ 0,

r2aa
00 þ xay00 � mgCL;aYy0 þ ðr2a � mgCL;aY2Þaþ xaa

3 ¼ 0, ð2Þ

where y ¼ h=b is the nondimensional heave motion; xa ¼ Sa=ðmbÞ ¼ xcg=b, the nondimensional static unbalance;

O ¼ oh=oa, the ratio of uncoupled linear natural frequencies oh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kh=m

p
and oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka=Ia

p
; m ¼ r1bS=ð2mÞ, the

density ratio; CL;a ¼ qCL=qa, the slope of the lift coefficient at zero angle of attack; Y ¼ U=ðboaÞ, the reduced speed of

the flow; ra, the radius of gyration of the cross-section of the wing; g ¼ e=b, the nondimensional distance of the ea from

the ac; and xy and xa, the respective coefficients for the nonlinear stiffness terms. Differentiation in (2) is with respect to

the nondimensional time, t ¼ oat.

First, we perform a linearized analysis by substituting y ¼ eptȳ, a ¼ eptā into (2), and considering only the linear part

of (2) (i.e., we set c1 ¼ c2 � 0); hence, we obtain the following linearized complex eigenvalue problem:

p2 þ mCL;aYpþ O2 xap2 þ mCL;aY2

xap2 � mgCL;aYp r2ap2 þ r2a � mgCL;aY2

" #
ȳ

ā

� �
¼

0

0

� �
. (3)

The linearized solvability condition for the complex frequency equation becomes,

A4p4 þ A3p3 þ A2p2 þ A1pþ A0 ¼ 0, (4)
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where

A4 ¼ r2a � x2
a;A3 ¼ mCL;aYðr2a þ gxaÞ; A2 ¼ r2að1þ O2Þ � mCL;aðxa þ gÞY2;

A1 ¼ mr2aCL;aY;A0 ¼ O2ðr2a � mgCL;aY2Þ.

Using the parameters from Dowell et al. (1995),

xa ¼ 0:2; ra ¼ 0:5; g ¼ 0:4; O ¼ 0:5; m ¼ ð10pÞ�1; CL;a ¼ 2p; xy ¼ xa � 1, (5)

we perform linearized flutter analysis to compute the flutter speed at which divergent responses are predicted.

Fig. 2 shows the real and imaginary parts of the solution p ¼ pR þ io (pR;o 2 R) of (4). The real part pR determines

the stability of the trivial equilibrium; if pR40, the solution is unstable, which implies divergent response of the wing.

For the above numerical parameter values, we obtain the flutter speed YðQSÞ
F ¼ YF ¼ 0:87. Note that steady

aerodynamics predicts a higher flutter speed than quasi-steady theory (i.e., YðSÞF ¼ 1:03), and also the frequency

coalescence at the flutter speed for the steady flow condition. This is called coalescence or merging frequency flutter

(Dowell et al., 1995).

Now we include nonlinear stiffnesses in both dof. Clearly, stability behavior of the trivial solution y ¼ a � 0 will

follow the linear analysis since the trivial solution is a hyperbolic equilibrium point, so we can invoke the Hartman-

Grobman Theorem and claim topological conjugacy between the linear and nonlinear local vector fields sufficiently

close to the hyperbolic equilibrium (Guckenheimer and Holmes, 1983). Also, due to the hardening nonlinearities, which

are expected to limit the amplitudes of the responses, the nonlinear system may possess LCOs at supercritical speeds

(i.e., for Y4YF ). In Fig. 3 we depict typical responses at subcritical and supercritical speeds of the linearized and

nonlinear system (2), respectively. We see that the linear system predicts divergent responses, which are clearly not

realistic; in actuality, the nonlinearities restrict the growth of the diverging wing so that LCOs are developed instead.

3. Slow-flow dynamics

3.1. Frequency information with respect to reduced velocity

In order to establish an accurate slow-flow dynamics model that captures reliably and robustly the full nonlinear

response of system (2), we need to determine precisely the dominant frequency components of the dynamics in the
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Fig. 2. Real and imaginary parts of the solutions of Eq. (4) with respect to the reduced velocity; solid and dashed lines correspond to

the eigenvalues computed by using quasi-steady (QS) and steady (S) aerodynamics, respectively.
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Fig. 3. Time responses at (a) subcritical (Y ¼ 0:5) and (b) supercritical (Y ¼ 0:95) reduced velocities in the linear and nonlinear

models; initial conditions are ðyð0Þ; að0Þ; y0ð0Þ; a0ð0ÞÞ ¼ ð0:01; 0; 0; 0Þ.
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different stages of the motion; see, for example, Lee et al. (2005) regarding an analytical study of the symmetric and

unsymmetric periodic solutions of an essentially nonlinear system, containing multifrequency components.

Determination of the dominant frequency components in the nonlinear response is important, as it will dictate the

dimensionality of the reduced order model that will be developed to model the nonlinear dynamics.

First, we examine the dominant frequency components in the responses for varying reduced velocity. Fig. 4 presents

power spectra of the heave and pitch responses normalized with their respective maximum power at each reduced

velocity. For subcritical reduced speeds (i.e., YoYF ), there are only two dominant frequency components, oheave and

opitch, related to the two linearized natural frequencies for the heave and pitch (in terms of the nondimensional

frequencies defined previously the two dominant components are O and 1, respectively). When the reduced velocity
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exceeds the flutter speed (i.e., Y4YF ), there appear two dominant frequency components, opitch and 3opitch, for the

heave mode; and one dominant frequency component, opitch, for the pitch mode. This clearly shows that below and

above the flutter speed, the aeroelastic response of the wing contains three dominant frequency components, related to

the two linear natural frequencies of the linear flutter model; that is, the lowest component corresponds to the heave

mode (i.e., oheave � O ¼ 0:5), the middle one to the pitch mode (i.e., opitch � 1), and the highest one is approximately

three times that of the pitch mode (i.e., 3opitch � 3). In the following exposition we will refer to these three dominant

frequencies by LF, MF, and HF (low, middle, and high frequencies), respectively.
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The FFT analysis provides an averaged view of the frequency content of a signal. Since the phenomena studied in this

work are essentially nonlinear and transient, we resort instead to frequency decompositions based on wavelet

transforms (WTs), which provide information on the temporal evolutions of the dominant harmonic components of the

subcritical or supercritical transient responses of the wing. This will enable us to clearly establish and study transitions

that occur between different regimes of the transient motions. For clarity, we review the WT analysis which was also

used in Lee et al. (2005). The WT can be viewed not only as a basis for functional representation, but at the same time as

a useful technique for time-frequency analysis (Keener, 2000); the WT involves a windowing technique with variable-

sized regions so that it may perform a multi-resolution analysis, in contrast to the FFT which assumes signal

stationarity as aforementioned. Small time intervals are considered for high-frequency components whereas the size of

the interval is increased for lower-frequency components, thereby giving better time and frequency resolutions than the

FFT. The Matlabs codes used for the WT computations in this work were developed at the Université de Liège by Dr

V. Lenaerts in collaboration with Dr P. Argoul from the Ecole Nationale des Ponts et Chaussées (Paris, France). Two

types of mother wavelets cM ðtÞ are considered in the codes: (i) the Morlet wavelet, which is a Gaussian-windowed

complex sinusoid of frequency o0, cM ðtÞ ¼ e�t2=2ejo0t; and (ii) the Cauchy wavelet of order n, cM ðtÞ ¼ ½j=ðtþ jÞ�nþ1,

where j2 ¼ �1. The frequency o0 for the Morlet WT and the order n for the Cauchy WT are user-specified parameters

which allow one to tune the frequency and time resolutions of the results. In this study, we utilized the Morlet wavelet.

The plots shown represent the amplitude of the WT as a function of frequency (vertical axis) and time (horizontal axis).

Heavy shaded areas correspond to regions where the amplitude of the WT is high whereas lightly shaded regions

correspond to low amplitudes. Such plots enable one to deduce the temporal evolutions of the dominant frequency

components of the signals analyzed.

We perform WT analysis for two specific reduced velocities; Y ¼ 0:5 and 0.95 corresponding to subcritical and

supercritical wing responses, respectively (Figs. 5 and 6). However, the results presented herein can be extended to other

values corresponding of subcritical or supercritical reduced speeds.

When the flow speed is less than the flutter speed (i.e., in a subcritical regime), the linear natural frequency of the

heave mode appears as the main frequency component in heave, and that of the pitch mode as the minor. On the other

hand, the pitching response possesses both heave and pitch harmonics with the pitch harmonic being the dominant one.

Apparently, there exists a frequency relation of opitch � 2oheave as we may expect from the relation satisfied by the two

linear natural frequencies; i.e., a 1:2 internal resonance occurs in the transient dynamics of the wing when a flow speed is

less than the flutter speed. In addition, we can see existence of the non-negligible frequency component in the pitch

mode at the linearized heave natural frequency (i.e., � O ¼ 0:5) so that the lowest likewise frequency components both

in heave and pitch modes appear to interact with each other up to t � 80. In Section 4.2, we will show numerically that

this transient dynamics is also captured into a 1:1 resonance manifold (Quinn, 1997a; Vakakis and Gendelman, 2001).

Clearly, the energy extracted from the flow is being channeled and then exchanged between the nonlinear modes

through resonance captures (as discussed below).

In the supercritical regime, however, a qualitative change in the dynamics occurs, since a sudden transition (jump)

between frequency components takes place. To understand such transitions we will need to partition the dynamics into

three separate phases: (i) an initial transient period, where likewise frequency components are likely to match each other

leading to 1:1 resonance captures (we will define this dynamical mechanism leading to rigorous energy exchanges

between interacting nonlinear modes, as transient resonance capture, or TRC); (ii) a transition or escape phase into new

frequency or resonance relations, where the basic heave harmonic gradually triggers the pitch mode at its dominant

harmonic and then dies out, whereas at the same time a higher frequency component develops nearly at three times the

pitch linearized frequency (i.e., a 3:1 super-harmonic component); and finally (iii) generation of LCOs as a steady-state

response develops, where the resulting dominant harmonics are the 3:1 super-harmonic component in heave mode and

the pitch linearized frequency in pitch mode. We will explore each one of these phases of the dynamics in detail, since

they constitute triggering mechanism for LCOs in the in-flow rigid wing.
3.2. Multiphase averaged system

Before proceeding to the analysis of the different regimes of the triggering mechanism, it will be necessary to develop

a reduced order model of the dynamics through multiphase averaging, taking into account the previous WT-based

frequency analysis. To this end, we reconsider the equations of motion (2), and through a linear coordinate

transformation express them in the following inertially decoupled form,

y00 þ z1y0 þ k11yþ k12aþ n11y3 þ n12a3 ¼ 0,

a00 þ z2y0 þ k21yþ k22aþ n21y3 þ n22a3 ¼ 0, ð6Þ
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Fig. 5. Time-dependent frequency responses at a subcritical speed (Y ¼ 0:5): (a) heave and (b) pitch; initial conditions are

ðyð0Þ; að0Þ; y0ð0Þ; a0ð0ÞÞ ¼ ð0:01; 0; 0; 0Þ.
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where the coefficients are defined as

z1 � mCL;aYðr2a þ gxaÞ=D; z2 � �mCL;aYðgþ xaÞ=D,

k11 � r2aO
2=D; k12 � fmCL;aY2ðr2a þ gxaÞ � r2axag=D,

k21 � � xaO2=D; k22 � fr
2
a � mCL;aY2ðgþ xaÞg=D,

n11 � r2axy=D; n12 � �xaxa=D; n21 � �xaxy=D; n22 � xa=D ð7Þ
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and D ¼ r2a � x2
a40 for any mass distribution. Note that only the coefficients z1; z2; k12; k22 are functions of the reduced

velocity, Y. Moreover, the condition k12 � 0 resulting from the eigenvalue analysis determines the flutter speed,

YF �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2axa

mCL;aðr2a þ gxaÞ

s
, (8)

so that, if k12o0) YoYF and no flutter occurs.
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Based on our previous finding that there exist at most three dominant frequency components in the subcritical and

supercritical wind responses, we assume that the heave and pitch responses may be decomposed into three dominant

frequency components, namely

yðtÞ ¼ y1ðtÞ þ y2ðtÞ þ y3ðtÞ,

aðtÞ ¼ a1ðtÞ þ a2ðtÞ þ a3ðtÞ. ð9Þ

The subscripts 1, 2, and 3 denote terms possessing three distinct dominant (‘fast’ in the terminology used in the

following analysis) frequencies, i.e., being proportional to ejOt; ejt, and e3jt, respectively. Now, following Manevitch

(2001) we introduce the following new complex variables:

c1 ¼ y01 þ jOy1; c3 ¼ y02 þ jy2; c5 ¼ y03 þ 3jy3,

c2 ¼ a01 þ jOa1; c4 ¼ a02 þ ja2; c6 ¼ a03 þ 3ja3, ð10Þ

where j2 ¼ �1.

Thus, denoting by ( )* the complex conjugate, we may express the original real variables in terms of the new complex

ones:

y ¼
1

2jO
ðc1 � c�1Þ þ

1

2j
ðc3 � c�3Þ þ

1

6j
ðc5 � c�5Þ,

a ¼
1

2jO
ðc2 � c�2Þ þ

1

2j
ðc4 � c�4Þ þ

1

6j
ðc6 � c�6Þ,

y0 ¼
1

2
ðc1 þ c�1 þ c3 þ c�3 þ c5 þ c�5Þ,

a0 ¼
1

2
ðc2 þ c�2 þ c4 þ c�4 þ c6 þ c�6Þ,

y00 ¼ c01 þ c03 þ c05 �
jO
2
ðc1 þ c�1Þ �

j

2
ðc3 þ c�3Þ �

3j

2
ðc5 þ c�5Þ,

a00 ¼ c02 þ c04 þ c06 �
jO
2
ðc2 þ c�2Þ �

j

2
ðc4 þ c�4Þ �

3j

2
ðc6 þ c�6Þ. ð11Þ

At this point we partition the complex responses into slow and fast parts:

c1ðtÞ ¼ j1ðtÞe
jOt; c3ðtÞ ¼ j3ðtÞe

jt; c5ðtÞ ¼ j5ðtÞe
3jt,

c2ðtÞ ¼ j2ðtÞe
jOt; c4ðtÞ ¼ j4ðtÞe

jt; c6ðtÞ ¼ j6ðtÞe
3jt, ð12Þ

where jkðtÞ; k ¼ 1; 2; . . . ; 6 represent slowly varying complex-valued amplitude modulations. In expressing the variables

according to (12) we assume that the transient responses are composed of ‘fast’ oscillations [represented by the complex

exponentials in (12)] modulated by ‘slow’ envelopes [represented by the complex amplitudes jkðtÞ in (12)]. This partition

is fully compatible with the numerical simulations. It should be clear that the (slow) temporal evolution of the

modulations jkðtÞ govern the essential dynamics of system (6) in an appropriately defined slow-flow phase space.

Interestingly enough, the dimensionality of the slow-flow phase space—in this case 12—differs from the dimensionality

of the phase space of the original system (6)—which is 4; this is due to the fact that the dimensionality of the slow-flow

phase space depends on the number of dominant harmonics that govern the transient dynamics—in this case 3.

Substituting (11) and (12) into (6) and applying the multiphase averaging (Lochak and Meunier, 1988) over the

frequency components, ejOt; ejt, and e3jt, we obtain six complex-valued modulation equations of the form

j0 þ F ðj;YÞ ¼ 0;F ;j 2 C6;Y 2 R, (13)

where the details of F ðj;YÞ can be found in the Appendix A.1, and the reduced velocity Y is regarded as an

independent parameter.

Figs. 7 and 8 show the validity of the averaged system with optimally determined initial conditions (see below)

compared to the (numerically) exact solutions for both subcritical and supercritical reduced velocities. Our careful

numerical study (not fully shown herein) indicates that the three-harmonic slow-flow model (13) approximates well the

original dynamics at the entire range of reduced speeds, i.e., the averaged system is valid for accurately modeling the

nonlinear dynamics over the entire subsonic fluid–structure interaction regime.

We note that each of the dominant harmonic components in the model (9) can be recovered from the averaged system

(13), according to the expressions
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y1ðtÞ ¼
1

O
Im½j1ðtÞe

jOt�; a1ðtÞ ¼
1

O
Im½j2ðtÞe

jOt�,

y2ðtÞ ¼ Im½j3ðtÞe
jt�; a2ðtÞ ¼ Im½j4ðtÞe

jt�,

y3ðtÞ ¼
1

3
Im½j5ðtÞe

3jt�; a3ðtÞ ¼
1

3
Im½j6ðtÞe

3jt�, ð14Þ

so we may reconstruct the heave and pitch responses directly from the decompositions (9).
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An interesting point now discussed concerns the choice of initial conditions of the reduced set (13). Because we need

twelve initial conditions for the averaged system (13), and we possess only four initial conditions for the full system (6),

the problem or determining the appropriate initial conditions of the slow-flow model (13) becomes indeterminate. That

is, we may write from the decomposition (9),

yð0Þ ¼ y1ð0Þ þ y2ð0Þ þ y3ð0Þ; að0Þ ¼ a1ð0Þ þ a2ð0Þ þ a3ð0Þ,

y0ð0Þ ¼ y01ð0Þ þ y02ð0Þ þ y03ð0Þ; a0ð0Þ ¼ a01ð0Þ þ a02ð0Þ þ a03ð0Þ, ð15Þ
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which leads to the expressions,

j1ð0Þ ¼ y01 0ð Þ þ jOy1ð0Þ; j2ð0Þ ¼ a01ð0Þ þ jOa1ð0Þ,

j3ð0Þ ¼ y02 0ð Þ þ jy2ð0Þ; j4ð0Þ ¼ a02ð0Þ þ ja2ð0Þ,

j5ð0Þ ¼ y03 0ð Þ þ 3jy3ð0Þ; j6ð0Þ ¼ a03ð0Þ þ 3ja3ð0Þ, ð16Þ

under the restrictions:

Imj3ð0Þ ¼ yð0Þ � ½O�1 Imj1ð0Þ þ
1
3
Imj5ð0Þ�;

Imj4ð0Þ ¼ að0Þ � ½O�1Imj2ð0Þ þ
1
3
Imj6ð0Þ�;

Rej3ð0Þ ¼ y0ð0Þ � ½Rej1ð0Þ þRej5ð0Þ�;

Rej4ð0Þ ¼ a0ð0Þ � ½Rej2ð0Þ þRej6ð0Þ�:

(17)

Determining the initial conditions for the averaged system (13) is thus converted to the following optimization

problem:

Compute min
0otpt̂

NMSEðxðtÞ; xaðtÞÞ
� �

for some t̂; subject to ð17Þ; (18)

where the quantity to be minimized is regarded as function of the six sought initial conditions fj1ð0Þ; . . . ;j6ð0Þg, and

NMSE stands for normalized mean square error and is defined as, NMSE ¼ E½jjx� xajj
2�=E½jjx� E½x�jj2� where E½d�

denotes the mean value and the standard inner product is used as the norm; moreover, xðtÞ ¼ ðyðtÞ; aðtÞÞ and xaðtÞ ¼
ðyaðtÞ; aaðtÞÞ are the response vectors of the full and averaged systems, respectively. Note that the solution of the

optimization problem (18) may not be unique, since it depends on the topological properties and singularities of the

solution manifold in the corresponding space (for example, the solution manifold may have several local minima so that

the ‘optimal solution’ can be computed as any one of them).

We may avoid this lack of uniqueness by expressing the solutions of (13) in Taylor series, jiðtÞ ¼
PN

j¼0jijt
j þ OðtNþ1Þ

where jij 2 C; i ¼ 1; . . . ; 6 as t! 0 (hence, we assume that jt̂j51), and matching the series with the exact solutions at a

specified matching instant of time to determine uniquely each of the Taylor coefficients. Then we can construct the

normal equation and find the so-called Moore-Penrose least squares solution which should be unique in terms of the

Fredholm Alternative Theorem [e.g., see Keener (2000)]. However, this kind of matching—in spite of uniqueness—may

not provide good long-term results, particularly for higher-order approximations or multiphase averaging. For

example, Keener (1977) studied the validity of the two-timing method (which is also called the method of multiple

scales, or can be regarded as the first order averaging method) for limit cycles for large times; he showed that the

approximate solution, which is pointwise valid only for times of order Oð1=eÞ, is orbitally valid for large times in the sense

that the approximate solution (although not pointwise valid for all times) approaches a valid approximation of a stable

limit cycle.

Therefore, in this work we consider approximate solutions in the sense of orbital validity by way of the optimal initial

conditions, instead of pointwise accuracy which is guaranteed only up to a small time scale and provides totally wrong

prediction in the long run.

Considering the real-valued modulation equations of (13), two different formulations for analyzing the slow-flow

dynamics can be followed, namely, further expressions of the complex quantities in Cartesian or polar coordinates. Let

us first consider the slow-flow equations in Cartesian coordinates. Expressing jkðtÞ ¼ z2k�1ðtÞ þ jz2kðtÞ, k ¼ 1; . . . ; 6,
where zi 2 R, 8i into (6), we obtain twelve (real-valued) slow-flow modulation equations:

Z0 ¼ GðZ;YÞ; Z ¼ ðz1; :::; z12Þ 2 R12; Y 2 R ðCartesian coordinatesÞ: (19)

Alternatively, expressing the complex quantities in polarform, we express jkðtÞ ¼ akðtÞejbkðtÞ,

ak 2 Rþ; bk 2 S1; k ¼ 1; . . . ; 6, which when substituted in (13), and upon separation of its real and imaginary parts,

leads to a set of twelve equations of the form:

a0k ¼
~f kða; b;YÞ and akb

0
k ¼ ~gkða; b;YÞ.

The exact form of these equations is given in Appendix A.2. By combining these equations we derive the following

autonomous set of alternative slow-flow modulation equations:

a0k ¼ f kða;f;YÞ; aiajf
0
ij ¼ gnða;f;YÞ ðpolar coordinatesÞ; (20)
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where k ¼ 1; . . . ; 6, and ðn; i; jÞ ¼ ð1; 1; 2Þ, (2; 3, 5), (3; 3, 6), (4; 4, 5), (5; 4, 6). There are only five independent phase

relations in (20) representing five phase differences between components of the solution with the following physical

meanings:
�
 f12 ¼ b1 � b2 represents the interaction between LF heave and LF pitch
�
 f35 ¼ 3b3 � b5 represents the interaction between MF heave and HF heave
�
 f36 ¼ 3b3 � b6 represents the interaction between MF heave and HF pitch
�
 f45 ¼ 3b4 � b5 represents the interaction between MF pitch and HF heave
�
 f46 ¼ 3b4 � b6 represents the interaction between MF pitch and HF pitch.
It can be shown that all other possible phase differences arising in (20) can be expressed in terms of these five

independent phase variables; e.g., phase interaction between MF heave and MF pitch can be expressed as

f34 ¼
1
3ðf35 � f45Þ or

1
3ðf36 � f46Þ.

Although the modulation sets (19) and (20) are equivalent, in the following analysis we will be using the modulation

equations in polar form, Eqs. (20), since they provide direct information on the amplitudes of the components of the

solution, as well as, on the phases representing the nonlinear interactions between these components. A mathematical

deficiency, however, of the equations in polar form relates to the mathematical singularity of the polar transformation

at the origin, which renders the set (20) invalid for analyzing the dynamics when some or all of the components have

zero (or nearly zero) amplitudes. In that case the modulation equations in Cartesian form, (19), should be used.

3.3. Steady-state dynamics

Before we utilize the slow-flow model (20) to study LCO triggering mechanism, we perform first a steady-state

bifurcation analysis of the dynamics utilizing MATCONT, the numerical continuation code in Matlabs (Dhooge et al.,

2003), in conjunction with the algorithm introduced in Kubı́ček (1976) utilizing parameterization with respect to the arc

length of equilibrium loci.

To this end, we consider the original equations of motion (6), and express them in the first order form

x0 ¼ X ðx;YÞ where x ¼ ðy; a; y0; a0Þ 2 R4; Y 2 R.

Direct application of MATCONT on these first order differential equations gives bifurcation diagrams that provide

global information on the dynamics of the full system at steady state (Fig. 9). As we discussed in Section 2, the (stable)

trivial equilibrium x ¼ 0 undergoes a Hopf bifurcation at the flutter speed at YF ¼ 0:87, and changes its stability with

simultaneous generation of a stable LCO. When the reduced velocity reaches the divergence flutter speed YD ¼ 1:767,
two unstable nontrivial equilibrium points are computed. The solution curve for heave appears almost vertical at YD,

while that for pitch does not. The physical interpretation is that, for reduced velocities higher than the divergence flutter

speed, almost every heave position can be an equilibrium point whereas the pitch mode possesses a specific equilibrium

position. We note that, if we zoom out the vertical axis in Fig. 9(a) to the same order as in Fig. 9(b), then the heave

equilibrium curve also looks like a parabola; but this understanding may not be physically meaningful. In any case,

these nontrivial equilibrium points are unstable so that they are not physically realizable.

The divergence flutter represents a static instability (Blevins, 1990) and the corresponding reduced speed can be

computed from static balance as

YD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a=ðgmCL;aÞ

q
. (21)

Since the above results provide only global information regarding to where and what type of bifurcations occur, and

how large the LCO amplitudes are, they will not help us understand the modal interactions that generate the

fluid–structure instabilities and eventually act as LCO triggering mechanisms. Therefore, we perform bifurcation

analysis for the averaged system (19) for the trivial equilibrium via MATCONT, and for (20) for the nontrivial LCOs

utilizing Kubı́ček’s method (1976). The reason for using two different approaches is dictated by the possible

singularities built in (20); e.g., if one of the amplitudes becomes zero, then the equations become singular (i.e., it

degenerates to a set of differential-algebraic equations) and becomes unsolvable using MATCONT (which only solves

differential equations of the standard form x0 ¼ X ðx; sÞ where x 2 Rn; s 2 Rk).

Fig. 10 depicts the numerical continuation results for steady-state amplitudes and phase differences for the

multiphase averaged system (20) (recall the optimization problem for determining the initial conditions in Section 3.2,

and note that these solutions may not be unique.) We can clearly see that after the flutter speed the HF heave and MF

pitch components are dominant at steady state, which is exactly consistent with the numerical simulations. These
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steady-state results will be revisited in Section 4.3, where analytical study of the LCO triggering mechanism is carried

out.

Because our wing model assumes small oscillations, jajo10� � 0:1745 radians, the numerical solutions at higher

supercritical speeds may deviate from physical observations. In addition, we may not observe the secondary Hopf
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bifurcation by our slow-flow analysis since at least five dominant harmonics are required for it (Liu and Dowell, 2004).

Moreover, only supercritical LCOs will be obtained due to the specific parameter choices.

We now examine the possible existence of other equilibrium solutions of the slow-flow Eqs. (20). In fact, there exist

many other nontrivial but degenerate equilibrium solutions; Fig. 11 presents one of those computed by numerical

continuation of equilibria, i.e., all near-trivial amplitudes except the LF pitch, a2, and corresponding phase-difference

relations. The LF pitch amplitude a2 in Fig. 11(a) is equal to Oa4 ¼ 0:5a4; where a4 is the MF pitch amplitude in

Fig. 10(b); although it can be obtained analytically below, we may intuitively guess the relation by examining the
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expression of the amplitudes in (14) and considering a specific balanced energy value for a specific reduced speed. For

example, suppose that we have a certain balanced energy level for Y ¼ 0:95, all the amplitudes except LF or MF pitch

are almost trivial, and that we know the LCO amplitude in pitch as a ¼ 0:2525 (note that in general the contribution of

heave mode to the total energy at steady state is quite negligible; see, for example, Fig. 17(b)). Then, a ¼ a4 when only

MF pitch is dominant; if only LF pitch is dominant, then we may compute a ¼ a2=O ¼ a4 by (14).

Figs. 12 and 13 show heave and pitch responses that correspond to the steady state motions at Y ¼ 0:95 depicted in

Figs. 10 and 11, respectively. In both cases, the same initial conditions are used: ðyð0Þ; að0Þ; y0ð0Þ; a0ð0ÞÞ ¼
ð10�3; 10�3; 0; 0Þ. However, those for the slow-flow Eqs. (20) are different; i.e., initial conditions for Fig. 12 are

optimal ones to accurately approximate the exact solutions which will be used later in the study of LCO triggering

mechanism, whereas those for Fig. 13 are slightly different. Since the numerical observation can be made only for stable

motions, both steady-state solutions found in Figs. 10 and 11 are stable ones, but it turns out the prediction depicted in
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Fig. 13 is not meaningful in our study of the LCO triggering mechanism because it is based on a degenerate equilibrium

of the slow-flow modulation equations, and does not provide any information on the HF heave component which is

observable in reality.

The degenerate equilibrium solutions presented in Fig. 11 can be derived analytically from a subsystem of slow-flow

model (20), i.e., from the multiphase averaged system with two dominant frequencies corresponding to LF and MF

components—it will be called the two-frequency averaged system hereafter. For this subsystem, we neglect HF terms of

y3ðtÞ and a3ðtÞ in (9) which are the decomposition corresponding to HF components; or get rid of the complex variables
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of c5 and c6 introduced in (10)–(12) so that the resulting complex-valued slow-flow equation (13) retain only

j1; . . . ;j4 2 C. Then, from Appendix A.2, we obtain a reduced two-frequency averaged system in polar form,

a01 þ
z1
2

a1 �
a2

2O
sin f12 k12 þ

3n12

4O2
a22 þ

3n12

2
a24

� �
¼ 0, (22a)
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where in this case there appear only two likewise phase relations, i.e., phase interaction between LF heave and LF pitch

modes, f12 ¼ b1 � b2, and that between MF heave and MF pitch modes, f34 ¼ b3 � b4.
For steady-state solutions, we set a01 ¼ � � � ¼ a04 ¼ f012 ¼ f034 ¼ 0 in (22), and obtain a set of six algebraic equations,

from which the equilibrium solutions can be computed. First we consider the case where ðf12;f34Þ ¼ ðmp; npÞ and
m; n 2 N, and substitute sin f12 ¼ sin f34 � 0; cos f12 ¼ cos f34 � 	1 into (22) to obtain a1 ¼ a3 ¼ 0 from (22a) to

(22d), i.e., only trivial solutions for heave mode. Then, (22e) and (22f) yield two conditions:

a2
2 k12 þ

3n12

4O2
a22 þ

3n12

2
a24

� �
¼ 0 and a24 k12 þ

3n12

2O2
a22 þ

3n12

4
a24

� �
¼ 0. (23)

The solutions for (23) are the following four cases:

ðiÞ a2 ¼ a4 � 0 : Trivial solutions (24a)

ðiiÞ a4 � 0 but a2a0 : Nontrivial LF pitch mode;

i:e:; a2 ¼ 2O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k12=ð3n12Þ

p
if k12=n12o0 ð24bÞ

ðiiiÞ a2 � 0 but a4a0 : Nontrivial MF pitch mode;

i:e:; a4 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k12=ð3n12Þ

p
if k12=n12o0 ðor Y4YF Þ ð24cÞ

ðivÞ a2a0 and a4a0 : Nontrivial LF and MF pitch modes;

i:e:; a2 ¼
2
3
O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k12=n12

p
; a4 ¼

2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k12=n12

p
if k12=n12o0. ð24dÞ

Similarly, for combinations of phase differences ðf12;f34Þ ¼ ðmp; ð2nþ 1Þp=2Þ, ðð2mþ 1Þp=2; npÞ, and ðð2mþ

1Þp=2; ð2nþ 1Þp=2Þ where m; n 2 N, we can also compute the same equilibrium solutions as in (24). Furthermore, we

can evaluate their stability analytically, although the perturbed equations become a set of differential-algebraic

equations due to the singular amplitudes; the two resulting algebraic equations from (22e,f) act as constraints to the

four first-order differential modulation equations so that we can evaluate the eigenvalues of the (4
 4) Jacobian matrix

evaluated at the equilibrium to determine its stability; in some cases we come up with zero eigenvalues, and higher-order

perturbation techniques may be required to evaluate stability. Detailed evaluation of the stability will not be discussed



ARTICLE IN PRESS
Y.S. Lee et al. / Journal of Fluids and Structures 21 (2005) 485–529 507
in this study. It is, however, remarked that the stability of equilibrium solutions depends on phase relations. Fig. 14

depicts one specific set of steady-state amplitudes when ðf12;f34Þ ¼ ðp=2; p=2Þ; these steady-state solutions for the two-
frequency averaged system can be regarded as a degenerate subset of the three-frequency averaged system (13).

In Fig. 15, we present special orbits in the phase space projected onto LF heave versus LF pitch, and MF heave

versus MF pitch planes when Y ¼ 1:1; they are completed starting from the set of initial conditions lying on the stable

and unstable eigenvectors evaluated at each equilibrium point by forward and backward integrations. Due to the high

dimensionality of the phase space, one may hardly conclude that those orbits are homoclinic or heteroclinic orbits.

Nonetheless, those special orbits give some insights regarding the LCO triggering mechanism. That is, given an initial

state close to the trivial equilibrium, it will be thrown away from the initial state due to the instability at the trivial

equilibrium (transient regime); the dynamics will approach and stay for some period close to one of the equilibrium

position possessing both stable and unstable manifolds (denoted TRC at Stage I; see Section 4.1 for the definition); it

will slowly escape from near the unstable equilibrium (Escape at Stage II) then permanently captured to the final stable
(a)
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equilibrium position (PRC at Stage III). This description makes sense by examining Fig. 13(c) where we may say

roughly the time interval ½0; 30� corresponds to transient regime; ½30; 100� to TRC; ½100; 200� to escape; and finally

½200; tb1Þ to PRC. These apparent resonance captures only refer to those valid in the degenerated phase space. The

LCO triggering mechanism will be explored both numerically and analytically in Sections 4.2 and 4.3.
4. LCO triggering mechanisms

In this section, we show numerically and analytically that resonance captures are responsible for the triggering and

developing LCOs. For this purpose, we first introduce some definitions such as transient and permanent capture,

escape, and passage through resonance; and we review the concepts of internal resonance and resonance capture.

4.1. Definitions

Resonance capture (or capture/entrapment into a resonance manifold) can be regarded as a form of transient internal

resonance, whereby an orbit of the dynamical system is captured in the neighborhood of a resonance manifold in phase

space, triggering vigorous energy exchanges between different subsystems. Moreover, resonance captures prevent the

direct application of the averaging principle particularly in systems with multiple frequencies (Arnold, 1988; Sanders

and Verhulst, 1985); on the other hand, resonance captures lead to interesting energy exchanges and dynamic

interactions in celestial mechanics, orbital mechanics, or even in particle dynamics (Koon et al., 2001; Belokonov and

Zabolotnov, 2002; Itin et al., 2000), and is also a very important dynamic behavior in studying the so-called nonlinear

energy pumping phenomenon, which makes possible irreversible and one-way, passive energy transfer from one

component of a dynamical system to a different component, which acts, in essence, as a nonlinear energy sink (Vakakis

and Gendelman, 2001; Vakakis et al., 2003; Kerschen et al., 2006).

Definition (Sanders and Verhulst, 1985): Consider the system in polar form with multiphase angles

r0 ¼ eRðf; rÞ; f0 ¼ OðrÞ, (25)

where r 2 Rp, f 2 Tq (generally, qpp), OðrÞ ¼ ðO1ðrÞ;O2ðrÞ; . . . ;OqðrÞÞ, and the dimension of r may be greater than that

of the original dynamical system, depending on frequency decompositions [this is indeed the case in this work—

compare Eqs. (2) and (20)]. The set of points in D � Rp where OiðrÞ � 0, i ¼ 1; 2; . . . ; q is called the resonance manifold.

This resonance condition is not sufficient; that is, if each OiðrÞ, i ¼ 1; 2; . . . ; q is away from zero, the internal resonance

manifold is defined as the set fr 2 Rp : hk;OðrÞi ¼ 0; k 2 Zqg where the corresponding Fourier coefficients from Rðf; rÞ
are not identically zero.

Assume that the averaged system intersects transversely the resonant manifold. Roughly, capture into resonance may

occur for some phase relations satisfying the condition that an orbit of the dynamical system reaching the neighborhood

of the resonant manifold continues in such a way that the commensurable frequency relation is approximately

preserved; in this situation not all phase angles are fast (time-like) variables, so classical averaging cannot be performed

with regard to these angles. As a result, over the time scale 1=e the exact and averaged solutions diverge up to Oð1Þ

(Arnold, 1988).

Definition (Bosley and Kevorkian, 1992): Suppose that (internal) resonance occurs at a time instant t ¼ t0, with the

nontrivial frequency combination s ¼ k1o1 þ k2o2 þ � � � þ kqoq, where ki 2 Z, i ¼ 1; . . . ; q, vanishing at that time

instant t ¼ t0. Then, sustained resonance is defined to occur when s � 0 persists for times t� t0 ¼ Oð1Þ. On the other

hand, transient resonance refers to the case when s makes a single slow passage through zero.

Definition (Quinn, 1997a): The possible behavior of trajectories near the resonance manifold on the time scale 1=e is
described according to the following three cases: (i) Capture: Solutions are unbounded in backward time. However,

captured trajectories remain bounded for forward times of Oð1=eÞ, i.e., a sustained resonance exists in forward time; (ii)

Escape: Solutions grow unbounded in forward time. However, in backward time, solutions remain bounded for times of

Oð1=eÞ, i.e., a sustained resonance exists in backward time; and (iii) Pass-through: Solutions do not remain in the

neighborhood of the resonance manifold in either forward or backward time. No sustained resonance exists.

A mechanism for resonance capture in perturbed two-frequency Hamiltonian systems was studied by Burns and

Jones (1993) where the most probable mechanisms for resonance capture are described to involve an interaction
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between the asymptotic structures of the averaged system and a resonance. It was shown that, if the system satisfies a

less restrictive condition [or Condition N (Lochak and Meunier, 1988)] regarding transversal intersection of the

averaged orbits to the resonance manifold, resonance capture can be viewed as an event with low probability, and

passage through resonance is the typical behavior on the time scale 1=e.
Necessary conditions were proved in Kath (1983a) both for entrainment to sustained resonance and for its

continuance (and thus the possible indication of unlocking or escape from the sustained resonance after a finite time) by

successive near-identity transformations; a sufficient condition was also derived for continuation of sustained resonance

by means of matched asymptotic expansions (Kath, 1983b).

On the other hand, transition to escape was studied by Quinn (1997b) in a coupled Hamiltonian system consisting of

two identical oscillators possessing a homoclinic orbit when uncoupled. Focusing on intermediate energy levels at which

sustained resonant motion occurs, he analyzed the existence and behavior of those motions in equipotential surfaces

whose trajectories are shown to remain in the transiently stochastic region for long times and, finally, to escape or leak

out of the opening in the equipotential curves and proceeding to infinity.

Regarding passage through resonance, one may refer to, for example, Neishtadt (1975). The phenomenon of passage-

through resonance is sometimes referred to as nonstationary resonances caused by excitations having time-dependent

frequencies and amplitudes (Nayfeh and Mook, 1979).

Finally, we conclude this section with the following alternative definitions which are useful for understanding LCO

triggering mechanisms when multifrequency components are considered.

Definition (Burns and Jones, 1993): Consider an unforced n-dof system whose linear natural frequencies are ok,

k ¼ 1; . . . ; n. We define (i) Internal Resonance (IR) as motions for which there exist ki 2 Z, i ¼ 1; 2; . . . ; n, such that

k1o1 þ � � � þ knon � 0, i.e., some combination of linear natural frequencies satisfy commensurability; (ii) Transient

Resonance Capture (TRC) as capture into a resonance manifold which occurs and continues for a certain period of time

(for example, on the time scale 1=e) and then finally involves transition to escape. This includes sustained resonance

captures involving escape; and (iii) Permanent Resonance Capture (PRC) as sustained resonance captures that will never

escape for increasing time.

It was also noted that the PRC is quite likely for the pendulum-like equations (or called pendulum normal form)

obtained by a partial averaging in the neighborhood of a given resonance in the original dynamics which can have

infinitely many resonances. Unstable equilibrium point of the corresponding unperturbed pendulum system should be

nondegenerate by Neishtadt’s Condition B (Arnold, 1988), which is another weaker transversality condition; for

example, a single dof pendulum equation possesses an unstable equilibrium point (i.e., a saddle point) when the mass is

vertically upward, and there exist a homoclinic orbit passing the saddle point and enclosing a stable equilibrium which

indicates the vertically-downward position. Accordingly, the behavior of PRCs were formulated in two theorems: one is

regarding existence of an attractor near the resonance manifold; the other, for its domain of attraction and hence the

likelihood of resonance captures tending asymptotically to the resonant attractor (Burns and Jones, 1993).

Both TRC and PRC may occur along the internal resonance manifold, and are distinguished by whether they involve

an escape or not. Both IR and PRC may show similar steady-state behaviors, which differ from the commensurability

condition between linear natural frequencies. Hereafter when we mention a m : n internal resonance, it refers to a

condition on the slow-flow averaged system unless otherwise noted.

For more details on resonance captures in multifrequency systems, one can also refer to Bakhtin (1986), Lochak and

Meunier (1988), Dodson et al. (1989) and Neishtadt (1997, 1999).
4.2. Numerical observations of LCO triggering mechanism

In this section, we study the LCO triggering mechanism due to aeroelastic instability numerically, utilizing the

complex-valued slow-flow equations (13) with the optimal initial conditions (see Section 3.2) by which reasonable

validity of the approximation can be achieved.

First, we examine the dynamics of the system at subcritical reduced speeds. Fig. 16(a) depicts the heave and pitch

responses at a subcritical reduced speed (Y ¼ 0:5), normalized by their respective maximum amplitudes in order to

compare their frequency contents. Apparent existence of 1:2 IR (i.e., opitch � 2oheave) was mentioned in Section 3.1

from the wavelet transform analysis (Fig. 5). In addition, occurrence of 1:1 RCs was also suggested. One may observe

the occurrence of these two resonance interactions from the plot of Fig. 16(a). Considering the dominant frequencies in

each response up to t � 100, we approximately compute the frequency ratio of heave to pitch modes as one-to-two; for

later times these two responses become one-to-one and out-of-phase as shown in the zoomed plot.
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Fig. 16. Responses at subcritical speed (Y ¼ 0:5). (a) Normalized heave and pitch responses, (b) energy variation with respect to time,

(c) likewise phase differences in time, (d) likewise phase differences in phase plane, (e) phase interactions between different frequency

components in time, (f) different phase interactions in phase plane, and (g) instantaneous frequencies; initial conditions are

ðyð0Þ; að0Þ; y0ð0Þ; a0ð0ÞÞ ¼ ð10�3; 10�3; 0; 0Þ.
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The existence of 1:1 RCs can be verified by the phase analysis depicted in Fig. 16(c)–(f). We note that phase

interactions with the HF component do not exist in essence and thus they are meaningless in the phase analysis at

subcritical speeds (indeed, from Fig. 5 we deduced that there are no HF components in both responses). Note the

wandering behavior of f56 in Fig. 16(c), and the time-like behaviors of the phase interactions of MF components with

HF components in Fig. 16(e) and (f). If we examine the phase interactions between the LF heave and LF pitch

components, f12, and between the MF heave and MF pitch components, f34, we clearly establish their non-time-like

behaviors in time domain (Fig. 16(c)), revealed in the form of spirals in the phase space (Fig. 16(d)); we conclude that

these phase differences are not ‘fast’ angles so they may not be averaged out of the dynamics. On the contrary, their

slow (non-time-like) temporal evolution indicates that the corresponding modes are involved in 1:1 resonance captures.
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By time-like phase variables we denote monotonically increasing or decreasing time responses so that those variables

can be regarded as fast time variables by the relation W � ot where W is a phase variable, o a frequency, and t the time

variable (Sanders and Verhulst, 1985). Typically, such fast, time-like phase variables can be removed by applying

averaging (see Section 4.3 regarding partial averaging). However, in the neighborhood of a resonance manifold, non-

time-like behavior of the phase variables occurs, rendering them slow-varying and preventing their elimination from the

equations of motion by direct averaging; in mathematical terms, the failure of the averaging theorem is due to the

vanishing of a denominator in the averaged equations or, equivalently, due to the slow variation of the phase difference

between the two harmonic components considered. Returning to the results of Fig. 16, the phase interaction between

likewise MF components is slowly varying (as evidenced by its nearly straight line variation in Fig. 16(c)), while the

corresponding phase difference between likewise LF components indicates escape from the 1:1 RC at t � 150.

The utilization of these phase interactions as evidence for IR or RCs is confirmed by the instantaneous frequencies of

Fig. 16(g), computed by the following relations [see also the decomposition (9) with the complex variables (12) and the
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polar coordinate transformations],

oh
1ðtÞ ¼ Oþ b01ðtÞ; oh

2ðtÞ ¼ 1þ b03ðtÞ; oh
3ðtÞ ¼ 3þ b05ðtÞ,

oa
1ðtÞ ¼ Oþ b02ðtÞ; oa

2ðtÞ ¼ 1þ b04ðtÞ; oa
3ðtÞ ¼ 3þ b06ðtÞ, ð26Þ

where bk ¼ tan�1ðImjk=RejkÞ, k ¼ 1; . . . ; 6, and their derivatives regarded as slow frequency corrections to the fast

dominant values (Zniber and Quinn, 2003).

For the 1:2 IR between heave and pitch modes, oa
2ðtÞ is compared to 2oh

1ðtÞ. Then, we check that the frequency

relation, oa
2 � 2oh

1 � 0, persists in the entire time interval, which clearly implies the occurrence of 1:2 IR. We remark

that this internal resonance is possible only because of our choice of a specific ratio between the natural frequencies, i.e.,

O ¼ 0:5. On the other hand, comparing oh
1ðtÞ and oa

1ðtÞ, and oh
2ðtÞ and oa

2ðtÞ, we clearly verify that 1:1 RCs and also
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escape from 1:1 RC in likewise LF components occur. Then, it is natural that we observe energy exchanges between

heave and pitch modes such that the two modes are in an internal resonance with dissipation [see Fig. 16(b), (Greenlee

and Snow, 1975)].

Now we explore the LCO triggering mechanism at supercritical flow speeds, using similar arguments. Basically, the

triggering mechanism is composed of three main stages as discussed in wavelet transform analysis in Section 3.1. The

classification is established by studying energy exchanges between heave and pitch modes (Fig. 17(b)), phase

interactions between dominant frequency components (Fig. 17(c)–(f)), and the corresponding instantaneous frequencies

(Fig. 17(g)). We refer to these three stages as Stages I, II, and III, with main corresponding features, one-to-one

transient resonance captures (1:1 TRCs), escape from the 1:1 TRCs, and finally three-to-one permanent resonance

captures (3:1 PRC), respectively. Each of these regimes for a specific supercritical reduced speed (i.e., Y ¼ 0:95) is
considered in detail below.

Stage I. Initial transients (up to t � 20) involves a 1:2 IR (Fig. 17(g)) which may initially cause strong energy exchanges

between the heave and pitch modes (Fig. 17(b)). Then, these transients are driven quickly into 1:1 resonance capture

regimes. Comparing the time responses (Fig. 17(a)), we find that they show in-phase, 1:1 resonance captures after the

initial transients; and amplitudes of both modes (and thus the respective energies) are increasing. 1:1 RCs are much

clearer in terms of instantaneous energy exchanges between modes (Fig. 17(b)); energies in both modes are raised until

the energy of the heave mode reaches its maximum at the end of the Stage I.

In-phase 1:1 resonance capture has been reported as one of the fundamental mechanisms for nonlinear energy

pumping (Kerschen et al., 2005), whereby, a major portion of the energy in a primary system is transferred irreversibly

to an attached nonlinear subsystem, which is termed nonlinear energy sink (NES). In analogy, the pitch mode can be

regarded as a primary system, and the heave mode as the NES where the energy is irreversibly transferred.

Our aeroelastic model possesses a positive damping component in the heave mode and negative damping in the pitch

mode. Thus, unlike the usual nonlinear energy pumping phenomenon, energies in both modes increase during the 1:1

resonance captures. Besides, energy dissipation by the heave mode (as for the NES) plays no significant role in the

competition between the two damping mechanisms. This also explains the viewpoint that the initial excitation of the

heave mode acts or triggers initiation and development of the pitch mode. It is remarkable that the nonlinear beating

phenomenon, which is caused by 1:2 IR (Nayfeh and Mook, 1979), was reported as the most efficient mechanism to

transfer or initiate nonlinear energy pumping (Kerschen et al., 2005). That is why the short occurrence of 1:2 IR initially

makes possible the maximum energy transfer. 1:1 RCs are verified by non-time-like behaviors of the phase differences

between likewise frequency components (Fig. 17(c)), and spirals formed in the projection of the phase space (Fig. 17(d)).
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In particular, the instantaneous frequencies shown in Fig. 17(g) indicate 1:1 RCs, since the frequencies of likewise

frequency components lie, on average, very close to each other, following straight lines whereas in later times some of

the components show frequency shifting (Zniber and Quinn, 2003) with increasing energy.

Stage II. Once the heave mode reaches its maximum, escape from 1:1 RCs occurs. Superimposed time responses show

the transitions (Zoom A in Fig. 17(a)); the in-phase 1:1 RCs turn to 3:1 RCs at the end gradually as the heave and pitch

amplitude decreases and increases, respectively. Thus the energy exchanges between the two modes (Fig. 17(b)) follows
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the typical behavior of escape from in-phase 1:1 RC (Kerschen et al., 2005). Time-like behaviors of likewise phase

differences (with f56 the most prominent; Fig. 17(c)), and escaping from spirals in projected phase planes (Fig. 17(d))

confirm escape from 1:1 RCs. In the meanwhile, phase differences between MF heave and HF heave, and between MF

pitch and HF heave show no more time-like behaviors, which is a precursor of 3:1 PRCs (Fig. 17(e)). Finally, this

escape from 1:1 RCs is evident in terms of instantaneous frequencies (Fig. 17(g)).

Stage III. As a result of the escape at Stage II, the steady-state dynamics finally settles into 3:1 PRCs. Examining the

zoomed-in plot of the responses (Fig. 17(a)), we can easily establish the frequency relation between the two modes as
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nearly 3:1, and the occurrence of in-phase oscillations. The energy exchanges between heave and pitch modes become

balanced, on average, and mostly imparted to the pitch mode (Fig. 17(b)). Resonance captures can be verified similarly

as in Stages I and II, i.e., by means of non-time-like phase behaviors and spirals in the phase space, as well as in terms of

instantaneous frequencies. In particular, comparing 3oa
2ðtÞ and oh

3ðtÞ at this stage, we can find a good alignment

between them on average; i.e., 3oa
2 � oh

3 � 0 (Fig. 17(g)).

One thing to note is that the HF heave (or the steady-state resonance frequency component) undergoes upward

frequency shift so that 3:1 PRC to MF pitch is made possible, as energy is continuously fed from the flow into the

system. It is also remarkable that the likewise phase differences in Fig. 17(c) and (d) at this stage imply the existence

of 1:1 RCs.
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4.3. Analytical proof of LCO triggering mechanism

In this section, we prove analytically the LCO triggering mechanism observed previously. Employing partial

averaging which is a local analysis, we will perform averaging only for non-resonant (fast) phase angles that possess

time-like behavior. In this way, we can remove the time-like phase variables, and achieve a reduced-order model (Zniber

and Quinn, 2003).

We consider the analytical resonance captures in terms of numerical integration of the reduced-order model derived

by the partial averaging at each stage of the analysis. Then, the order of approximation and its validity on the time scale

can be verified when escape occurs. For the proof of PRC at Stage III, existence of steady-state equilibrium points of

the reduced-order model will serve as a necessary (but not sufficient) condition for PRCs (Quinn, 1997a; Zniber and

Quinn, 2003; Burns and Jones, 1993; Kath, 1983a, b).
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Fig. 18. Amplitude and phase responses computed from the averaged system (16) for a supercritical reduced velocity ðY ¼ 0:95Þ; initial
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Since the averaged system possesses sensitive dependence on initial conditions as explained in Section 3.3 due to the

complexity of the phase space (see Figs. 12 and 13), optimal initial conditions for the slow-flow modulation equations in

polar form (20) will be utilized. As a result, we may deduce different phase behaviors and different steady states (Fig.

18(c) and (d)) than those in Fig. 17 which were computed using the optimal initial conditions for the complex-valued

modulation equations (13).

Figs. 18(a) and (b) show amplitude envelopes of heave and pitch components, respectively. We may expect that

dominant contribution to the initial triggering of LCOs comes from MF heave so that it develops the likewise

counterpart, MF pitch at Stage I. Then, from Stage II until the dynamics reaches its steady state, MF pitch together

with MF heave act as the driving mechanism to further raise the amplitude of HF heave. This intuition is visualized in

the phase responses.
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The initial triggering is expressed by non-time-like behaviors of the likewise phase differences (and thus by 1:1 RCs)

at Stage I (Fig. 18(c)). On the other hand, time-like responses in the other phase differences imply that no other effective

triggering mechanisms exist. At Stage II, escape from likewise HF components occurs while the other likewise frequency

components are still in 1:1 RCs. Non-time-like behaviors of the phase interactions between MF heave and HF heave

(i.e., f35) and between MF pitch and HF heave (i.e., f45) support the previous argument. At steady state (i.e., Stage III),

only phase differences between LF heave and LF pitch remain captured into 1:1 resonance while the other phase

differences escape from 1:1 RCs. Indeed, only the phase interaction between MF pitch and HF heave keeps non-time-

like behavior, which coincides with the numerical simulations (using the original dynamical system before averaging is

applied).
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In Fig. 18(f) and (h) the instantaneous frequency of each component is plotted by means of relations (26); how-

ever, this time the detuning frequency b0k, k ¼ 1; . . . ; 6 is directly computed from the slow-flow equations (20).

Frequency locking between LF components persists almost during the entire time interval, and, in addition, the

steady-state resonance frequencies show an upward frequency shift along with increasing energy input from the

flow. Frequencies of MF components are kept in 1:1 RCs, on average, and become unlocked after Stage II, whereas

those of HF components are unlocked just at the end of Stage I. In particular, the frequency shift in HF heave

engages into another locking with three times of frequency of the MF pitch, as we already observed in the previous

section.
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components, and (d) pitch amplitude components.
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Stage I. Performing partial averaging over all time-like phase variables except cI ¼ ðf12;f34;f56Þ, we construct the

reduced-order model for 1:1 TRCs of the form

a0 ¼ f I ða;cI Þ; c0I ¼ gI ða;cI Þ, (27)

where a 2 R6 and cI 2 T3 ¼ S1 
 S1 
 S1. It will be sufficient to show numerically that there occurs an escape after

some period of frequency locking. When solving the reduced-order model, we use the optimal initial conditions which

are the same as those we used for the slow-flow equations (20). Then, we obtain the phase interactions depicted in

Fig. 19(a) and (b) where tA and tB refer to the approximate time instants when the dynamics is captured into, and

escape from RC. Hence, we definitely verify that there exist 1:1 TRCs at Stage I. When transition to escape occurs at tB,
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the partially averaged system loses validity. This becomes clear when one compares the exact and averaged HF heave

responses (Fig. 19(d)). The partially averaged system loses its validity when the escape occurs at tB. Frequency locking

occurs only between likewise phase differences.

Stage II. We perform a similar analysis as for Stage I. In this case, we define the non-time-like variables as cII ¼

ðf12;f34;f35;f45;f345Þ 2 T5 and construct the reduced-order model in the form

a0 ¼ f II ða;cII Þ; c0II ¼ gII ða;cII Þ. (28)

We note that in this case there exist only three phases as independent variables. As for the initial conditions for (28),

we pick the instant tB when the system enters Stage II, starting from the optimal initial conditions for (20). It is evident
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Fig. 21. Analytic resonance captures at Stage III (Y ¼ 0:95): (a) phase interaction, (b) frequency shifting, (c) heave amplitude

components, and (d) pitch amplitude components.
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(Fig. 20) that the dynamics is settling down into a steady-state motion at time instant tC . In particular, the (resonant)

frequencies of the HF components shift upward to their original positions (i.e., � 3) so that the system can attain 3:1

RCs. Note that the high-frequency modulations disappear through the partial averaging.

Stage III. We derive the reduced-order model with the non-time-like phase variables cIII ¼ ðf12;f45;f346Þ such that

a0 ¼ f III ða;cIII Þ; c0III ¼ gIII ða;cIII Þ (29)
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When solving the reduced-order model, we perform a similar analysis with Stage II, and then find that there exist

equilibrium (or steady state) points as proof of PRCs. Recall that the time derivatives of the phase variables, b0k,
k ¼ 1; . . . ; 6, in (26) act as detuning frequency components. Therefore, instead of finding equilibrium conditions for

detuning parameters as in Zniber and Quinn (2003), we focus on finding such conditions that b0i � b0iþ1; i ¼ 1; 3; 5 for 1:1
resonance captures, and 3b04 � b05 for 3:1 resonance captures. In this way, we may define the interval where frequency

locking occurs as evidence for resonance captures.

Fig. 21 finally shows the steady state (or PRC) in terms of the reduced-order model (29). Following Burns and Jones

(1993) and Zniber and Quinn (2003), we may verify existence of PRCs by finding equilibria computed by the reduced-

order model; that is, by examining the equilibria of pendulum-like equations obtained by partial averaging of the

original equations in neighborhoods of resonance manifolds. It is still not so easy to manually compute the equilibria of

the reduced model (29). Instead, we may verify their existence, for example, by examining Fig. 21(a)–(d), with

convergence at steady state regarded as proof of existence of the corresponding equilibria. Besides, we already found

some of these steady-state solutions by way of numerical continuation in Section 3.3. Thus, we may conclude that

resonance captures are retained permanently, i.e., that PRCs exist.
5. Concluding remarks

We investigated the LCO triggering mechanisms in a two-dof wing model in subsonic flow by employing quasi-steady

aerodynamics. Reviewing fundamental aspects of linear flutter theory, we established a slow-flow model based on

multiphase averaging which exhibits good agreement with the original dynamics. Through the method of numerical

continuation of equilibria, we analyzed the steady-state dynamics. The number of degenerate equilibria (i.e., not

physically meaningful because they are valid only in lower-dimensional phase space) is suspected to exceed that of

nondegenerate (but physically realizable) ones. Besides, the averaged system showed sensitive dependence on initial

conditions due to the resulting complexity of the phase space. It is interesting to note that even at subcritical flow speeds

1:1 resonance captures occur and are responsible for strong energy exchanges between modes. We also found that the

LCO triggering mechanism is composed of a series of one-to-one transient resonance capture, escape from capture, and

then three-to-one permanent resonance capture. After exploring the triggering mechanism numerically at each stage, we

proved our claims analytically by means of partial averaging.
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Appendix A

A.1. Complex-valued modulation equations
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A.2. Polar-form modulation equations
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